

A bit about me

- Software engineer, embedded systems
- Hobbyist maker electronics, radio, firmware, metalwork...
- Licensed amateur radio operator (73's de M0OFX))
- Retro tech enthusiast and reverse-engineer
 - HackTV, NABU PC cable modem, Datatrak radio navigation
- Not a James Bond villain in disguise.

YOU ARE ENTERING THE ANALOG TV SECTOR

ENTSPANNEN UND FERNSEHEN

What is cable TV?

- Started as radio and TV relay services: <u>Community Antenna TV</u> or <u>Rediffusion</u>
 - Poor signal an issue in valleys around hills and mountains
 - Fix: Put the antenna on a hill, amplify the received signal, retransmit it over cable
- Happy coincidence: reduced cost of entry for new services
 - RF: New transmitter + licenses (£millions) vs. ~£1000 for another modulator
- Scalable infrastructure
 - ~500 MHz bandwidth, 8 MHz/channel => space for 60 channels! Telephone! Data!
- Led to an explosion in local and large-scale programming
 - Coverage of local news and events (e.g. Swindon Cable's "Swindon Channel")
 - HBO, Nickelodeon, TNT, MTV, ... with their own in-house productions
 - Many well-known "classic" shows are from the "Golden Age of Cable"
 - ER, Seinfeld, X-Files, Quantum Leap, The Sopranos, Breaking Bad, Game of Thrones ...

A typical commercial setup

- <u>Headend</u> receives satellite/antenna signals, retransmits them
 Adds locally-generated signals e.g. control data, local channels, DOCSIS
- Trunk cable (~13-25mm dia. ultra-low-loss co-ax) carries signals between Taps
- <u>Taps</u> tap off a fixed amount of the signal for subscribers (RF splitter)
- Amplifiers boost the trunk signal to cover longer distances
- <u>Node</u>: street cabinet with Fibre RX, Amplifiers and other H/W
- Improvements over time
 1980s: fibre-optic trunks
 1990s: DAVIC/DOCSIS internet

Minimum viable product: getting started for cheap

- Video source (DVD, Raspberry Pi, Laserdisc, VHS)
- Modulator
- Cables
 - Type-F threaded for RF connections.
 (Get an F-connector wrench to save your fingers.)
 - PPC Compression-type F-connectors and WF100 cable 🤙 👍 👍 Starter kit ~£20 (ebay)
 - Composite video usually BNC or RCA/Phono.
 (R-Pi will need TRRS and/or TRS adapters)
- TV with analog RF (antenna) input

No analog RF input on the TV?

- Some TVs don't have an analog RF tuner (= cost savings)
 - They usually still have analog video in (SCART or RCA jacks)
- Monitors only accept analog composite and/or S-video or component
- Easy way: old VHS VCR (it only has to power on) or DVD recorder
- Nerdy way: Make your own! (~£20)
 - Philips FQ1216ME
 - o 5V and I2C in, composite video out
 - Arduino or similar for control
- Congratulations, you just build a simple cable box!

Generating video

- Spare Raspberry Pi
 - Analog and HDMI on all models config.txt allows a lot of configuration
 - Zero series and Pi 5 may need some soldering
 - 3B and earlier need a TRRS cable
- Spare PC
 - o Usually only HDMI/DVI out: may need converters
 - More storage = better for big-dog playout
- Software
 - Lazy option: VLC/FFMPEG and a directory of videos
 - Comfy Channel
 - https://github.com/mvarhola/comfy-channel/
 - Handles scheduling of content, bumps (adverts)and "up next" screens

Modulation: from three wires to one

- HDM69 RF modulator (£35 ebay, less on Aliexpress)
- HDMI and Composite in
 - Set to HDMI with no signal -> colour bar test pattern
 - Stereo audio inputs <u>but output is mono</u> (no NICAM or A2 stereo)
- RF in-out loop-through: no need for a combiner
 - Has RF level and modulation adjustments for multi-channel setups
- Set for PAL-I, 8MHz, UHF C21-69
 - o <u>www.ukfree.tv</u> will tell you which C-slots are free
- AM modulation (video): no VSB filter
 - Signal is 2x wider than standard on the negative end
 - Usually interferes with the lower audio carrier
 - FM "Capture effect" means TV locks onto the strongest
 - Space channels at least 16MHz apart

MVP: A-OK

Going from a channel to a network

- More channels! Just add more sources and modulators
 - RF splitters can be used in reverse as combiners
 - Some modulators can be looped through instead (no splitter needed)
- More outputs!
 - Amplified variable-gain splitter makes a usable low-cost launch amplifier
- Keep an eye on RF levels!
 - Channels should have reasonably consistent RF levels on the cable
 - Measure with channel-selective level meter
 - ~£50-100 (new RY-S110D, used Technetix TE-1250)
 - ~£300 (used Promax Prolink or TV Explorer)
 - Aim for ~ 75 dBuV for a TV, or $\sim 5-10$ dBmV for a cable box

Cool, what next?

- We have our favourite movies and shows on TV and defeated choice paralysis!
- Now what?
 - VBI services: Teletext
 - Better sound: NICAM
 - Programme guide channel
 - Weather channel
 - Try to take over the world!

Teletext: data in the vertical blank

- This is analog only (doesn't work on HDMI) and requires a Raspberry Pi.
- Uses two software packages:
 - VBIT2: https://github.com/peterkvt80/vbit2 (turns a directory of pages into a stream)
 - Raspi-Teletext: https://github.com/ali1234/raspi-teletext (puts the stream into the video)
- VBI insertion is done with the Pi's video output -> no HATs needed!
- Installation instructions on the VBIT2 Wiki
 - Just run one script to get started!
- Teletext page editors: https://edit.tf/
- Friendly community -
 - Facebook: https://www.facebook.com/groups/TeletextGroup/
 - Discord: https://discord.gg/JfytfS3xmg

Pre-EPG programme guides: Prevue Guide

- Problem: we don't know what's on
- No OSD we're not even using a cable box
 - GI CFT2200 was one of the first with EPG
 ... but requires special headend hardware
- Solution: run Prevue Guide on an Amiga
 1200 I just happen to have lying around...
 Genlock converts RGB to PAL
- If you don't have an Amiga: use UAE emulator or Prevue Simulator and a Raspberry Pi

See:

- <u>https://prevueguide.com</u>
- https://park-city.club/~frix/prevue/

Information services: Weather

- Why should I have to look out the window? I have a TV!
- WeatherStar 4000 simulator
 (<u>https://www.taiganet.com/</u>) is cool
 ... but only works for US cities.
- UK option: Met Office
 - Load website into an iframe
 - Custom JS to switch between player, maps, forecast.
 - Custom CSS to tidy things up for TV
 - Bonus: the ad banner disappears auto-magically on small screens!

Conditions at Tampa Intl. Arpt.

Wild cards: the NABU PC and cable Adaptor

- NABU PCs and CATV Adaptors were found in a warehouse last year and sold on eBay
- Retrocomputing enthusiasts bought them
- Cable adaptor reverse-engineered this year
 - Jared Boone, Youtube: "The 40 year old cable modem" (RF)
 - Me: Github, packet engine MCU ROM dump, reverse-engineered schematic
- Work ongoing, but will soon be able to use a SDR + Gnuradio to generate NABU headend "wheel" carousel

Image credit: revspace.nl, CC-BY-SA

Embiggen the thing: Reviving old cable boxes

Making a cable network

- We've made "cable TV" a TV can tune into. What about a cable box?
- Boxes expect an "out of band" downlink from the headend
 - Need a headend controller (Addressable Controller) to generate this
- Messages the box needs:
 - Date and time (optional but recommended)
 - "Timer Reset" command: resets the Disconnect timer
 - "Enable" command: activates the box, if it's deactivated
 - System site code or password: set this to an arbitrary value and keep repeating it.
 - Used to prevent boxes from being moved between providers without authorisation
 - Input and output frequency maps (RF channel start, logical number, spacing)
 - Logical channel map and names (channel 1 is RF channel 31 aka "BBC1", 3 is 53 aka "ITV", etc)

General Instrument ACC-4000 Addressable Controller

- Manuals turned up on SegaRetro.org's "Sega Channel" page.
- I posted on VCFED in 2023 looking for the software and hardware.
- Someone had one to sell (in part)!
 - DEC ApplicationDEC 400xp server, 486DX4-100, Interactive Unix 3.2
 - Software was VERY old (version 6.3, last release was 12.0)
 - No support for CFT-2200 Smart boxes, but works OK with everything else
 - Seller sent Ghost images of the three hard drives and sold me the GI-specific hardware
 - And FedEx lost the hardware for two weeks...!

Overengineering, Jerrold style: the ANIC

- Lets the PC communicate with the headend equipment and cable boxes
- ANIC is an embedded 286 PC-AT
 - 1MB RAM (30 pin SIMMs), no VGA, serial port (not used)
 - Custom data interface built around a Xilinx FPGA
 - o Data protocol is packetised, RS232 formatted, then Manchester biphase coded
- Talks to the PC over SCSI ... but the ANIC is the Initiator!
- PC or ANIC can organise the packet stream
 - Lists: same packet sent to a list of boxes. Used for background updates.
 - Punch: send a packet <u>now</u>. Used for instant changes (e.g. customer service calls -> Box Init/Refresh)
 - Poll: like a punch, but has return data. Used for opinion polling and system integrity checks.
 - "Box 555-1234, upload all unsent pay-per-view purchase records."
 - "Scrambler 867-5309, what is your status?"

The ANIC in pictures

SCSI

(Molex 5V/12V

power

underneath)

Data Out

Data In

Building a new Addressable Controller

- ▶ K6-II/400 PC rescued from garage and kitted out
 - New Dallas clock module battery (Dremel hack) -> PC wouldn't boot with bad battery!
 - Western Digital PVGA1024 WD90C30 graphics card
 - Adaptec AHA-1540 ISA SCSI for main disks (3x 500MB, emulated by BlueSCSI)
 - Buslogic SCSI controller for the ANIC
- Upgraded Interactive Unix to v4.1.1 (last release) for better hardware support
 - Disabled drivers for removed hardware (port concentrator and APC UPS)
 - Fixed issues with crontabs not running (and other brokenness)
- Upgraded the hardware
 - Adaptec AHA-2940UW SCSI controller for boot disks (3 off, on BlueSCSI V2) => faster boot
 - Trident TVGA8900C graphics => non-interlaced 1024x768 16-colour graphics
 - Brainboxes quad RS232-POS serial port card (terminals and Wirelink)
 - Intel PRO/100 Ethernet card (3C509B had issues on IUNIX)

A small problem

The ANIC had been damaged by a leaking Varta CMOS battery. This broke the RAM address decoder...

It's alive!

After repairing the damaged ANIC:

Generating the out-of-band channel

- Usually generated by a "Data Commander"
 - Generates OOB downlink at ~100MHz
 - Receives return channel at ~8-10MHz
 - Can't find one for love nor money.
- The RF modulation is just FM, though
- Can we just use an RF signal generator?
- Answer: Yes.
 - o I used a Marconi 2022E in FM mode
 - Used a TV/SAT splitter to combine the RF-out with the modulated video signals.

Next steps

- Boxes can send data back using a "Starvue" module
 - Modulates data in FM on a 8-10MHz carrier: the "return channel" or "return path"
 - Need to build a receiver: nothing commercially-available goes this low
 - May be able to sniff the data off the Starvue module connector.
 - Only six out of eleven wires are used
- Reverse-engineer the headend and rebuild it on a Pi Pico or Arduino
 - Smaller, lower power
 - Lets other people build one and set up their own headend

Fake news: Chyrons and crawlers

- A friend got an Aston Green and I wanted one. Nobody was selling one :()
- Found a Chyron Analog Lantern 64 card (pcCODI) on ebay US for £50
 - Turns out this is a PC-based character and graphics overlay card, similar to the Aston
 - Philips TriMedia processor, 64MB RAM, GPIO port, audio port
 - Digital Lantern is the same but has Digital SDI video in/out
- I put it in a PC.
 - O Drivers, SDK and Lyric software were on Chyron's FTP site
 - SDK very easy to use: load graphics and fonts, send drawing commands (text).
 - o Can use Chyron's Lyric software to set up 'pages' which can be loaded
- Now I can overlay news crawlers and sports scoreboards onto live video!

Chyron demo

Making life easier: matrix switch

- Matrix switch, aka Crosspoint switch.
- Any input to any output or several.
- Wire everything into the Crosspoint, control it with software.
 - -> No need to re-wire!
- Makers: Comm-tec, Kramer, Extron
- Aim for something with Ethernet or RS232 control

What I'm doing next

- All-in-one headend
 - RP2040 controller, JSON interface
 - 88-122MHz FSK modulator = headend commands (OOB)
 (AD9834 DDS + Si5351A LO + mixer)
 - 8-10MHz FSK demodulator = return path
 (FSK receiver from broken cable box + Si5351A?)
- Video scrambling
 - Get this working then add support to HackTV
- ... Cable TV at EMF 2026?

Q&A

- https://www.philpem.me.uk/ (web)
- https://digipres.club/@philpem (fedi)
- philpem@philpem.me.uk
- DECT: 3699 (FOX9)
- Outside the Robot Arms for a little while

